МОУ «Елатомская средняя общеобразовательная школа»

Рабочая программа по химии

8-9 классы

Пояснительная записка.

Рабочая программа по химии составлена на основе:

- Закона «Об образовании в Российской Федерации» от 29.12.2012г. № 273- ФЗ (с изменениями);
- Федерального государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки Российской Федерации от 17.12.2010г. №1897(с изменениями и дополнениями);
- Основной образовательной программы школы;
- Учебного плана школы; положения о рабочей программе;
- Рабочей программы предметной линии учебников Г. Е. Рудзитиса, Ф. Г. Фельдмана. ФГОС. Химия. 8- 9 классы: пособие для учителей общеобразовательных учреждений, сост. Гара Н. Н., М. «Просвещение», 2019 г

Рабочая программа раскрывает содержание обучения химии в 8 и 9 классах. Она рассчитана на 85 часов в 8 классе: 3 часа в неделю - первое полугодие, 2 часа в неделю - второе полугодие (2часа в неделю – федеральный компонент, 0,5 часа – школьный компонент) и 68 часов в 9 классе: 2 часа в неделю.

Одной из важнейших задач основного общего образования является подготовка обучающихся к осознанному и ответственному выбору жизненного и профессионального пути. Обучающиеся должны научиться самостоятельно ставить цели и определять пути их достижения, использовать приобретенный в школе опыт в реальной жизни, за рамками учебного процесса.

Химия как учебный предмет вносит существенный вклад в воспитание и развитие обучающихся; она призвана вооружить их основами химических знаний, необходимых для повседневной жизни, заложить фундамент для дальнейшего совершенствования этих знаний, а также способствовать безопасному поведению в окружающей среде и бережному отношению к ней.

Изучение химии в основной школе направлено:

- на освоение важнейших знаний об основных понятиях и законах химии, о химической символике;
- на овладении умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- на развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- на воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;

- на применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

В авторскую программу изучения химии в 8 классе внесены следующие изменения:

- Изменена последовательность изучения тем. Так как теоретическую основу курса неорганической химии составляет Периодический закон, учение о химической связи, то темы «Периодический закон» и «Строение вещества» изучаются сразу же после темы «Первоначальные химические понятия». Такая последовательность изучения тем даёт школьникам возможность уже в начале курса химии изучить его теоретическую основу. В связи с этим свойства элементов водорода, кислорода, а также свойства простых веществ, образованных этими элементами и свойства их соединений изучаются на более высоком теоретическом уровне, то есть на основании строения атомов, типов химических связей и строения молекул, знаний степени окисления и окислительно-восстановительных процессов. Благодаря этому у учащихся формируются правильные, полные представления о веществе и его свойствах и, самое главное, о взаимосвязи свойств веществ и их строения.
- Увеличено количество часов за счет школьного компонента: на изучение темы «Первоначальные химические понятия» 5часов; «Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома» 6 часов; «Строение вещества» 4часа; «Вода. Растворы» 3часа; «Основные классы неорганических соединений» 3часа. Это время используется на решение расчетных, качественных задач, упражнений практической направленности, отработку и закрепление полученных знаний и умений, применение полученных УУД для выполнения тренировочных упражнений и подготовку к контрольным работам.

Общая характеристика учебного предмета.

В содержании данного курса представлены основополагающие теоретические сведения по химии, включающие изучение состава и строения веществ, зависимости их свойств от строения, исследование закономерностей химических превращений и путей управления ими в целях получения веществ, материалов, энергии.

Содержание учебного предмета включает сведения о неорганических веществах, их строении и свойствах, а также химических процессах, протекающих в окружающем мире. Наиболее сложные элементы Фундаментального ядра содержания общего образования по химии, такие, как основы органической и промышленной химии, перенесены в программу средней (полной) общеобразовательной школы.

Теоретическую основу изучения неорганической химии составляет атомно-молекулярное учение, периодический закон Д.И.Менделеева с краткими сведениями о строении атомов, видах химической связи, закономерностях протекания химических реакций.

В изучении курса значительная роль отводится химическому эксперименту: проведению практических и лабораторных работ и описанию их результатов; соблюдению норм и правил поведения в химических лабораториях.

В качестве ценностных ориентиров химического оборудования выступают объекты, изучаемые в курсе химии, к которым у обучающихся формируется ценностное отношение. При этом ведущую роль играют познавательные ценности, так как данный учебный предмет входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы.

Основу познавательных ценностей составляют научные знания, научные методы познания. Познавательные ценностные ориентации, формируемые в процессе изучения химии, проявляются в признании:

- ценности научного знания, его практической значимости, достоверности;
- ценности химических методов исследования живой и неживой природы.

Развитие познавательных ценностных ориентаций содержания курса химии позволяет сформировать:

- уважительное отношение к созидательной, творческой деятельности;
- понимание необходимости здорового образа жизни;
- потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни;
- сознательный выбор будущей профессиональной деятельности.

Курс химии обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь. Коммуникативные ценностные ориентации курса способствуют:

- правильному использованию химической терминологии и символики;
- развитию потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;
- развитию умения открыто выражать и аргументированно отстаивать свою точку зрения.

Место курса химии в учебном плане.

Особенность курса химии состоит в том, что для его освоения школьники должны обладать не только определенным запасом предварительных естественно-научных знаний, но и достаточно хорошо развитым абстрактным мышлением. Это является главной причиной того, что в учебном плане этот предмет появляется последним в ряду естественно-научных дисциплин.

Результаты освоения курса химии.

Изучение химии в основной школе дает возможность достичь следующих результатов в направлении личностного развития:

- 1) воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувство гордости за свою Родину, за российскую химическую науку;
- 2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, а также социальному, культурному, языковому и духовному многообразию современного мира;
- 3) формирование ответственного отношения к учению, готовности и способности к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору профильного образования на основе информации о существующих профессиях и личных профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
- 4) формирование коммуникативной компетентности в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- 5) формирование понимания ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- 6) формирование познавательной и информационной культуры, в том числе развитие навыков самостоятельной работы с учебными пособиями, книгами, доступными инструментами и техническими средствами информационных технологий;
- 7) формирование основ экологического сознания на основе признания ценности жизни во всех ее проявлениях и необходимости ответственного, бережного отношения к окружающей среде;
- 8) развитие готовности к решению творческих задач, умения находить адекватные способы поведения и взаимодействия с партнерами во время учебной и внеучебной деятельности, способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности.

Метапредметными результатами освоения основной образовательной программы основного общего образования являются:

- 1) овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, поиска средств ее осуществления;
- 2) умение планировать пути достижения целей на основе самостоятельного анализа условий и средств их достижения, выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ, осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;

- 3) умение понимать проблему, ставить вопросы, выдвигать гипотезу, давать определения понятиям, классифицировать, структурировать материал, проводить эксперименты, аргументировать собственную позицию, формулировать выводы и заключения;
- 4) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 5) формирование и развитие компетентности в области использования инструментов и технических средств информационных технологий как инструментальной основы развития коммуникативных и познавательных универсальных учебных действий;
- 6) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- 7) умение извлекать информацию из различных источников, свободно пользоваться справочной литературой, в том числе и на электронных носителях, соблюдать нормы информационной избирательности, этики;
- 8) умение на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, объяснения, решения проблем, прогнозирования и др.;
- 9) умение организовывать свою жизнь в соответствии с представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия, культуры и социального взаимодействия;
- 10) умение выполнять познавательные и практические задания, в том числе проектные;
- 11) умение самостоятельно и аргументированно оценивать свои действия и действия одноклассников, содержательно обосновывая правильность или ошибочность результата и способа действия, адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи, а также свои возможности в достижении цели определенной сложности;
- 12) умение работать в группе эффективно сотрудничать и взаимодействовать на основе координации различных позиций при выработке общего решения в совместной деятельности; слушать партнера, формулировать и аргументировать свое мнение, корректно отстаивать свою позицию и координировать ее с позицией партнеров, в том числе в ситуации столкновения интересов; продуктивно разрешать конфликты на основе учета интересов и позиций всех их участников, поиска и оценки альтернативных способов их решения.

Предметными результатами освоения основной образовательной программы основного общего образования являются:

1) формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;

- 2) осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- 3) овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умение анализировать и планировать экологически безопасное поведение в целях сбережения здоровья и окружающей среды;
- 4) формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- 5) приобретение опыта использования различных методов изучения веществ; наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов;
- 6) умение оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием;
- 7) овладение приемами работы с информацией химического содержания, представленной в разной форме;
- 8) создание основы для формирования интереса к расширению и углублению химических знаний и выбора химии как профильного предмета при переходе на ступень среднего (полного) общего образования, а в дальнейшем и в качестве сферы своей профессиональной деятельности;
- 9) формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катостроф.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

8 класс

Тема 1. Первоначальные химические понятия

Предмет химии. Химия как часть естествознания. Вещества и их свойства. Методы познания в химии: наблюдение, эксперимент. Приемы безопасной работы с оборудованием и веществами. Строение пламени.

Чистые вещества и смеси. Способы очистки веществ: отстаивание, фильтрование, выпаривание, кристаллизация, дистилляция. Физические и химические явления. Химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций. Атомы, молекулы и ионы. Вещества молекулярного и немолекулярного строения. Кристаллические и аморфные вещества. Кристаллические решетки: ионная, атомная и молекулярная. Зависимость свойств веществ от типа кристаллической решетки. Простые и сложные вещества. Химический элемент. Металлы и неметаллы. Атомная единица массы. Относительная атомная масса. Язык химии. Знаки химических элементов. Закон постоянства состава вещества. Химические формулы. Относительная молекулярная масса. Качественный и количественный состав вещества. Вычисления по химическим формулам. Массовая доля химического элемента в сложном веществе.

Валентность химических элементов. Определение валентности элементов по формуле бинарных соединений. Составление химических формул бинарных соединений по валентности.

Атомно-молекулярное учение. Закон сохранения массы вещества. Жизнь и деятельность М.В.Ломоносова. Химические уравнения. Типы химических реакций.

Количественные отношения в химии. Количество вещества. Моль. Молярная масса. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Практическая работа 1. Приемы безопасной работы с оборудованием и веществами.

Практическая работа 2. Очистка загрязненной поваренной соли.

<u>Демонстрации.</u> Ознакомление с лабораторным оборудованием; приемами безопасной работы с ним. Способы очистки веществ. Нагревание парафина, стекла. Горение магния. Взаимодействие растворов карбоната натрия и соляной кислоты, сульфата меди и гидроксида натрия. Примеры простых и сложных веществ в разных агрегатных состояниях. Шаростержневые модели молекул метана, аммиака, воды. Модели кристаллических решеток разного типа.

<u>Лабораторные опыты.</u> Ознакомление с образцами простых и сложных веществ. Разложение основного карбоната меди (малахита) Замещение меди в растворе хлорида меди (II) железом.

<u>Расчетные задачи.</u> Вычисления относительной молекулярной массы веществ по химическим формулам. Вычисление массовой доли элемента в химическом соединении. Установление простейшей формулы вещества по массовым долям элементов .Вычисления по химическим уравнениям количества вещества, массы, объёма веществ, участвующих в реакции.

Контрольная работа по теме «Первоначальные химические понятия»

Тема 2. Периодический закон и периодическая система химических элементов Д.И.Менделеева. Строение атома.

Первоначальные попытки классификации химических элементов. Понятие о группах сходных элементов. Естественные семейства щелочных металлов и галогенов. Благородные газы.

Периодический закон Д.И.Менделеева. Периодическая система как естественно-научная классификация химических элементов. Табличная форма представления классификации химических элементов. Структура таблицы «Периодическая система химических элементов Д.И.Менделеева»: А- и Б-группы, периоды. Физический смысл порядкового номера, номера периода, номера группы.

Строение атома: ядро и электронная оболочка. Состав атомных ядер: протоны и нейтроны. Изотопы. Заряд атомного ядра, массовое число, относительная атомная масса. Современная формулировка понятия «химический элемент».

Электронная оболочка атома: понятие об энергетическом уровне, его емкости. Заполнение электронных слоев у атомов элементов первого — третьего периодов. Современная формулировка периодического закона.

Значение периодического закона. Научные достижения Д.И.Менделеева: исправление относительных атомных масс, предсказание существования неоткрытых элементов, перестановка химических элементов в периодической системе. Жизнь и деятельность Д.И.Менделеева.

<u>Демонстрации.</u> Физические свойства щелочных металлов и галогенов.

Тема 3. Строение вещества.

Электроотрицательность химических элементов. Основные виды химической связи: ковалентная неполярная, ковалентная полярная, ионная. Валентность элементов в свете электронной теории. Степень окисления. Правила определения степени окисления элементов.

<u>Демонстрации.</u> Сопоставление физико-химических свойств соединений с ковалентными и ионными связями.

Контрольная работа по темам «Периодический закон Д.И. Менделеева», «Строение атома», «Строение вещества»

Тема 4. Кислород. Оксиды. Горение.

Кислород. Нахождение в природе. Получение кислорода в лаборатории и промышленности. Физические и химические свойства кислорода. Горение. Оксиды. Применение кислорода. Круговорот кислорода в природе. Озон, аллотропия кислорода. Воздух и его состав. Защита атмосферного воздуха от загрязнений.

Практическая работа 3. Получение и свойства кислорода.

<u>Демонстрации.</u> Физические и химические свойства кислорода. Получение и собирание кислорода методом вытеснения воздуха и воды. Условия возникновения и прекращения горения. Определение состава воздуха.

Лабораторные опыты. Ознакомление с образцами оксидов.

Тема 5. Водород.

Водород. Нахождение в природе. Получение водорода в лаборатории и промышленности. Физические и химические свойства водорода. Водород — восстановитель. Меры безопасности при работе с водородом. Применение водорода.

<u>Практическая работа 4</u>. Получение водорода и исследование его свойств.

<u>Демонстрации.</u> Получение водорода в аппарате Киппа, проверка водорода на чистоту, горение водорода на воздухе и в кислороде, собирание водорода методом вытеснения воздуха и воды.

<u>Лабораторные опыты.</u> Взаимодействие водорода с оксидом меди.

Тема 6. Вода. Растворы.

Вода. Методы определения состава воды — анализ и синтез. Физические свойства воды. Вода в природе и способы ее очистки. Аэрация воды. Химические свойства воды. Применение воды. Вода — растворитель. Растворимость веществ в воде. Массовая доля растворенного вещества.

<u>Практическая работа 5.</u> Приготовление растворов солей с определённой массовой долей растворённого вещества.

<u>Демонстрации.</u> Анализ воды. Взаимодействие воды с натрием, кальцием, оксидом кальция, оксидом углерода.

<u>Расчетные задачи.</u> Определение массовой доли растворенного вещества в растворе. Вычисление массовой доли вещества и воды для приготовления раствора определенной концентрации.

Тема 7. Важнейшие классы неорганических соединений.

Важнейшие классы неорганических соединений. Оксиды: состав, классификация. Основные и кислотные оксиды. Номенклатура оксидов. Физические и химические свойства, получение и применение оксидов.

Гидроксиды. Классификация гидроксидов. Основания. Состав. Щелочи и нерастворимые основания. Номенклатура. Физические и химические свойства оснований. Реакция нейтрализации. Получение и применение оснований. Амфотерные оксиды и гидроксиды.

Кислоты: состав, классификация и номенклатура. Физические и химические свойства кислот. Вытеснительный ряд металлов.

Соли: состав, классификация и номенклатура. Физические свойства солей. Растворимость солей в воде. Химические свойства солей. Способы получения солей. Применение солей.

Генетическая связь между основными классами неорганических соединений.

<u>Практическая работа 6.</u> Решение экспериментальных задач по теме «Важнейшие классы неорганических соединений»

<u>Демонстрации.</u> Образцы оксидов, кислот, оснований и солей. Нейтрализация щелочи кислотой в присутствии индикатора.

<u>Лабораторные опыты.</u> Опыты, подтверждающие химические свойства оксидов, кислот, оснований, амфотерных гидроксидов, солей.

Контрольная работа по теме «Основные классы неорганических соединений»

9 класс

Раздел 1. Многообразие химических реакций.

Классификация химических реакций: реакции соединения, разложения, замещения, обмена. Окислительно-восстановительные реакции. Окислитель, восстановитель, процессы окисления и восстановления. Составление уравнений окислительно-восстановительных реакций с помощью метода электронного баланса.

Тепловые эффекты химических реакций. Экзотермические и эндотермические реакции. Термохимические уравнения. Расчеты по термохимическим уравнениям.

Скорость химических реакций. Факторы, влияющие на скорость химических реакций. Первоначальное представление о катализе.

Обратимые реакции. Понятие о химическом равновесии.

Химические реакции в водных растворах. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Гидратная теория растворов. Электролитическая диссоциация кислот, оснований, солей. Слабые и сильные электролиты. Степень диссоциации. Реакции ионного обмена. Условия течения реакций ионного обмена до конца. Химические свойства основных классов неорганических соединений в свете представлений об электролитической диссоциации и окислительно-восстановительных реакциях. Понятие о гидролизе солей.

Практические работы:

№1 «Изучение влияния условий проведения химической реакции на ее скорость».

№2 «Решение экспериментальных задач по теме «Свойства кислот, оснований и солей как электролитов»».

<u>Демонстрации.</u> Примеры экзо- и эндотермических реакций. Взаимодействие цинка с соляной и уксусной кислотами. Взаимодействие гранулированного цинка и цинковой пыли с соляной кислотой. Взаимодействие оксида меди (II) с серной кислотой разной концентрации при разных температурах. Горение угля в концентрированной азотной кислоте. Горение серы в расплавленной селитре. Испытание растворов веществ на электрическую проводимость. Движение ионов в электрическом поле.

Лабораторные опыты. Реакции обмена между растворами электролитов.

<u>Расчетные задачи.</u> Вычисления по термохимическим уравнениям реакций.

Контрольная работа по темам «Классификация химических реакций» и «Электролитическая диссоциация».

Раздел 2. Многообразие веществ.

Неметаллы. Галогены. Положение в периодической системе химических элементов, строение их атомов. Нахождение в природе. Физические и химические свойства галогенов. Сравнительная характеристика галогенов. Получение и применение галогенов. Хлор. Физические и химические свойства хлора. Применение хлора. Хлороводород. Физические свойства. Получение. Соляная кислота и ее соли. Качественная реакция на хлорид - ионы. Распознавание хлоридов, бромидов, иодидов.

Практические работы:

№3 «Получение соляной кислоты и изучение ее свойств».

<u>Демонстрации.</u> Физические свойства галогенов. Получение хлороводорода и растворение его в воде.

<u>Лабораторные опыты.</u> Вытеснение галогенами друг друга из растворов их соединений.

Кислород и сера. Положение в периодической системе химических элементов, строение их атомов. Сера. Аллотропия серы. Физические и химические свойства. Нахождение в природе. Применение серы. Сероводород. Сероводородная кислота и ее соли. Качественная реакция на сульфид – ионы. Оксид серы (IV). Физические и химические свойства. Применение. Сернистая кислота и ее соли. Качественная реакция на сульфит – ионы. Оксид серы (VI). Серная кислота. Химические свойства разбавленной и концентрированной серной кислоты. Качественная реакция на сульфат – ионы. Химические реакции, лежащие в основе получения серной кислоты в промышленности. Применение серной кислоты.

Практические работы:

№4 «Решение экспериментальных задач по теме «Кислород и сера»».

<u>Демонстрации.</u> Аллотропные модификации серы. Образцы природных сульфидов и сульфатов.

<u>Лабораторные опыты.</u> Ознакомление с образцами серы и ее природных соединений. Качественные реакции на сульфид-, сульфит- и сульфат-ионы в растворе.

<u>Расчетные задачи.</u> Вычисления по химическим уравнениям массы, объема и количества вещества одного из продуктов реакции по массе исходного вещества, объему или количеству вещества, содержащего определенную долю примесей.

Азот и фосфор. Положение в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение. Круговорот

азота в природе. Аммиак. Физические и химические свойства аммиака, получение, применение. Соли аммония. Азотная кислота и ее свойства. Окислительные свойства азотной кислоты. Получение азотной кислоты в лаборатории. Химические реакции, лежащие в основе получения азотной кислоты в промышленности. Применение азотной кислоты. Соли азотной кислоты и их применение. Азотные удобрения.

Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора. Оксид фосфора (V). Фосфорная кислота и ее соли. Фосфорные удобрения.

Практические работы:

№5 «Получение аммиака и изучение его свойств».

<u>Демонстрации.</u> Получение аммиака и его растворение в воде. Образцы природных нитратов и фосфатов.

<u>Лабораторные опыты.</u> Взаимодействие солей аммония со щелочами.

Углерод и кремний. Положение в периодической системе химических элементов, строение их атомов. Углерод. Аллотропия углерода. Физические и химические свойства углерода. Адсорбция. Угарный газ, свойства и физиологическое действие. Углекислый газ. Угольная кислота и ее соли. Качественная реакция на карбонат — ионы. Круговорот углерода в природе. Органические соединения углерода.

Кремний. Оксид кремния (IV). Кремниевая кислота и ее соли. Стекло. Цемент.

Практические работы:

№6 «Получение углекислого газа и изучение его свойств; распознавание карбонатов».

<u>Демонстрации.</u> Модели кристаллических решеток алмаза и графита. Образцы природных карбонатов и силикатов.

Лабораторные опыты. Качественные реакции на углекислый газ, карбонат-ион.

<u>Расчетные задачи.</u> Вычисления по химическим уравнениям массы, объема и количества вещества одного из продуктов реакции по массе исходного вещества, объему или количеству вещества, содержащего определенную долю примесей.

Контрольная работа по теме «Неметаллы».

Металлы. Положение металлов в периодической системе химических элементов, строение их атомов. Металлическая связь. Физические свойства металлов. Ряд активности металлов. Химические свойства металлов. Общие способы получения металлов. Сплавы металлов.

Щелочные металлы. Положение щелочных металлов в периодической системе химических элементов, строение их атомов. Нахождение в природе. Физические и химические свойства. Применение щелочных металлов и их соединений.

Щелочноземельные металлы. Положение щелочноземельных металлов в периодической системе химических элементов, строение их атомов. Нахождение в природе. Магний и кальций, их важнейшие соединения. Жесткость воды и способы ее устранения.

Алюминий. Положение алюминия в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства алюминия. Применение иалюминия. Амфотерность оксида и гидроксида алюминия.

Железо. Положение железа в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства железа. Важнейшие соединения железа: оксиды, гидроксиды и соли железа(II) и железа (III). Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Практические работы:

№7 «Решение экспериментальных задач по теме «Металлы и их соединения».

<u>Демонстрации.</u> Образцы важнейших соединений натрия, калия, природных соединений магния, кальция, алюминия, руд железа. Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой. Сжигание железа в кислороде и хлоре.

<u>Лабораторные опыты.</u> Изучение образцов металлов. Взаимодействие металлов с растворами солей. Ознакомление со свойствами и превращениями карбонатов и гидрокарбонатов. Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами. Качественная реакция на ионы железа.

<u>Расчетные задачи.</u> Вычисления по химическим уравнениям массы, объема и количества вещества одного из продуктов реакции по массе исходного вещества, объему или количеству вещества, содержащего определенную долю примесей.

Контрольная работа по теме «Металлы».

Раздел 3. Краткий обзор важнейших органических веществ.

Предмет органической химии. Неорганические и органические соединения. Углерод – основа жизни на Земле. Особенности строения атома углерода в органических соединениях.

Углеводороды. Предельные (насыщенные) углеводороды. Метан, этан, пропан – простейшие представители предельных углеводородов. Структурные формулы углеводородов. Гомологический ряд предельных углеводородов. Гомологи. Физические и химические свойства предельных углеводородов. Реакции горения и замещения. Нахождение в природе предельных углеводородов. Применение метана.

Непредельные (ненасыщенные) углеводороды. Этиленовый ряд непредельных углеводородов. Этилен. Физические и химические свойства этилена. Реакция присоединения. Качественные реакции на этилен. Реакция полимеризации. Полиэтилен. Применение этилена.

Ацетиленовый ряд непредельных углеводородов. Ацетилен. Свойства ацетилена. Применение ацетилена.

Производные углеводородов. Краткий обзор органических соединений: одноатомные спирты (метанол, этанол), многоатомные спирты (этиленгликоль, глицерин), карбоновые кислоты (муравьиная, уксусная), сложные эфиры, жиры, углеводы (глюкоза, сахароза, крахиал, целлюлоза), аминокислоты, белки. Роль белков в организме.

Понятие о высокомолекулярных веществах. Структура полимеров: мономер, полимер, структурное звено, степень полимеризации. Полиэтилен, полипропилен, поливинилхлорид.

<u>Демонстрации.</u> Модели молекул органических соединений. Горение углеводородов и обнаружение продуктов их горения. Получение этилена. Качественные реакции на этилен. Растворение этилового спирта в воде. Растворение глицирина в воде. Получение и свойства уксусной кислоты. Исследование свойств жиров: растворимость в воде и органических растворителях. Качественная реакция на глюкозу и крахмал. Образцы изделий из полиэтилена, полипропилена.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Основные понятия химии (уровень атомно-молекулярных представлений)

- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- раскрывать смысл основных химических понятий: атом, молекула, химический элемент, простое вещество, сложное вещество, валентность, используя знаковую систему химии;
- изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях;
- сравнивать по составу оксиды, основания, кислоты, соли;
- классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
- описывать состав, свойства и значение простых веществ кислорода и водорода;
- давать сравнительную характеристику химических элементов и важнейших соединений естественных семейств щелочных металлов и галогенов;
- пользоваться лабораторным оборудованием и химической посудой;

- проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
- различать экспериментально кислоты и щелочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.

- грамотно обращаться с веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретенные ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
- развивать коммуникативную компетентность, используя средства устного и письменного общения, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.

Периодический закон и периодическая система химических элементов Д.И.Меделеева. Строение вещества.

- классифицировать химические элементы на металлы, неметаллы, элементы, оксиды и гидроксиды которых амфотерны, и инертные элементы для осознания важности упорядоченности научных знаний;
- раскрывать смысл периодического закона Д.И.Менделеева;
- описывать и характеризовать табличную форму периодической системы химических элементов;
- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую

- изображать электронные формулы веществ, образованных химическими связями разного вида;
- выявлять зависимость свойств вещества от строения его кристаллической решетки;
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- описывать основные предпосылки открытия Д.И.Менделеевым периодического закона и периодической системы химических элементов и многообразную научную деятельность ученого; характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д.И.Менделеева;
- осознавать научные открытия как результат длительных наблюдений, опытов, научной полемики, преодоления трудностей и сомнений.

- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, ее основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.

Многообразие химических реакций

- объяснять суть химических процессов;
- называть признаки и условия протекания химических реакций;
- устанавливать принадлежность химических реакций к определенному типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции; 2) по выделению или поглощению теплоты; 3) по изменению степеней окисления химических элементов; 4) по обратимости процесса;
- называть факторы, влияющие на скорость химических реакций;
- называть факторы, влияющие на смещение химического равновесия;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращенные ионные уравнения реакций обмена; уравнения окислительно восстановительных реакций;
- прогнозировать продукты химических реакций по формулам названиям продуктов реакций;

- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- готовить растворы с определенной массовой долей растворенного вещества;
- определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
- проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных катионов и анионов.

- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- приводит примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;
- прогнозировать результаты воздействия различных факторов на скорость химической реакции;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия.

Многообразие веществ

- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
- составлять формулы веществ по их названиям;
- определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных;
- называть общие химические свойства, характерные для кислот, оснований, солей;

- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество окислитель и вещество восстановитель в окислительно восстановительных реакциях;
- составлять электронный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;
- проводить лабораторные опыты по получению и собиранию газообразных веществ: водорода, кислорода, углекислого газа, аммиака; составлять уравнения соответствующих реакций.

- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической связи между веществами в ряду: простое вещество оксид кислота/гидроксид соль;
- характеризовать особые свойства концентрированной серной и азотной кислот;
- приводить примеры уравнений реакций, лежащих в основе промышленных способов получения аммиака, серной кислоты, чугуна и стали;
- описывать физические и химические процессы, являющиеся частью круговорота веществ в природе;
- организовывать и осуществлять проекты по исследованию свойств практически значимых веществ.

Тематическое планирование уроков химии 8 класс (3 часа первое полугодие, 2 часа второе полугодие, всего 85 часов).

No	Тема урока	Кол-	Дата
		во	
		часов	
Тема 1.	Тема 1. Первоначальные химические понятия (30 час)		
1	Предмет химии. Химия как часть естествознания. Методы	1	
	познания в химии		
2-3	Практическая работа №1 «Приемы безопасной работы с	1	
	веществами и оборудованием. Строение пламени».		
4	Чистые вещества и смеси. Способы очистки веществ.	1	
5	Практическая работа №2 «Очистка загрязненной поваренной	1	
	соли».		
6	Физические и химические явления.	1	

7	Атомы, молекулы и ионы. Вещества молекулярного и	1
,	немолекулярного строения.	
8	Простые и сложные вещества.	1
9	Химические элементы.	1
10	Закон постоянства состава вещества. Химические формулы.	1
11	Относительная атомная и молекулярная масса.	1
12-13	Вычисление относительной молекулярной массы. Массовая	1
12 13	доля элемента в соединении. Установление простейщей	
	формулы вещества по массовым долям элементов.	
14	Валентность химических элементов.	1
15	Составление химических формул бинарных соединений по	1
	валентности.	
16	Атомно – молекулярное учение. Закон сохранения массы	1
	вещества.	
17-18	Химические уравнения.	2
19-20	Типы химических реакций.	2
21	Моль – единица количества вещества.	1
22	Вычисления с использованием понятий «количество	1
	вещества», «молярная масса».	
23	Закон Авогадро. Молярный объем газа.	1
24	Относительная плотность газов.	1
25	Объемные отношения газов при химических реакциях.	1
26-28	Вычисления по химическим уравнениям.	3
29	Обобщение и повторение темы «Первоначальные химические	2
	понятия».	
30	Контрольная работа по теме «Основные понятия химии».	1
	Периодический закон и периодическая система химических эл	лементов
	гнделеева. Строение атома. (13часов)	
31	Классификация химических элементов. Понятие о группах	1
	сходных элементов.	
32	Периодический закон Д.И.Менделеева.	1
33	Периодическая система химических элементов.	1
34	Характеристика элемента по положению в периодической	1
	системе.	
35-36	Строение атома.	1
37	Строение атомов элементов малых периодов.	1
38	Строение атомов элементов 4 периода	1
39	Причины периодичности изменения свойств элементов.	1
	Физический смысл периодического закона.	
40	Периодический закон и периодическая система элементов в	1
	свете учения о строении атома.	
41	Характеристика элемента по его положению в периодической	1
	системе и строению атома.	
42	Значение периодического закона. Научные достижения	1
10	Д.И.Менделеева.	
43	Повторение и обобщение темы «Периодический закон и	1
	периодическая система химических элементов Д.И.Менделеева.	
Tona 2	Строение атома».	
1 <i>ema</i> 3.	Эпострострукатор несть уничноских анамонтор	1
45-46	Электроотрицательность химических элементов.	1 2
	Ковалентная связь. Полярная и неполярная ковалентная связь.	4
47	Ионная связь.	1

48	Валентные возможности атомов.	1	
49	Обобщающий урок по теме «Типы химической связи».	1	
50	Степень окисления.	1	
51-52	Окислительно – восстановительные реакции.	2	
53	Повторение и обобщение темы «Строение вещества. Химическая связь».	1	
54	Контрольная работа по темам «Периодический закон»,	1	
T 1	«Строение вещества. Химическая связь».		
	Кислород. Воздух и его состав.(5часов)	1	
55	Кислород, его общая характеристика. Получение и физические свойства кислорода.	1	
56	Химические свойства и применение кислорода. Круговорот кислорода в природе.	1	
57	Практическая работа №3 «Получение и свойства кислорода».	1	
58	Озон. Аллотропия кислорода.	1	
59	Воздух, его состав. Защита атмосферного воздуха от	1	
	загрязнения.		
Раздел :	5. Водород.(Зчаса)		
60	Водород, его общая характеристика. Получение и физические свойства. Меры безопасности при работе с водородом.	1	
61	Химические свойства водорода. Применение.	1	
62	Практическая работа №4 «Получение водорода и	1	
	исследование его свойств».		
<i>Тема 5</i>	Вода. Растворы.(10часов)		l .
63	Вода в природе. Способы ее очистки. Аэрация воды.	1	
64	Физические и химические свойства воды. Применение.	1	
65	Вода – растворитель. Растворы.	1	
66	Массовая доля растворенного вещества.	1	
67-68	Решение задач.	2	
69	Практическая работа №5 «Приготовление раствора солей с	1	
	определенной массовой долей растворенного вещества»		
70	Повторение и обобщение тем «Кислород. Водород. Вода.	1	
	Растворы».		
71	Контрольная работа по темам «Кислород. Водород. Вода. Растворы».	1	
Тема 6	Основные классы неорганических соединений. (14часов)		
72-73	Оксиды: классификация, номенклатура, свойства, получение, применение.	2	
74-75	Гидроксиды: классификация, номенклатура, свойства,	2	
76	получение, применение.	1	
77-78	Амфотерные оксиды и гидроксиды.	2	
11-10	Кислоты: классификация, номенклатура, свойства, получение, применение.		
79-80	Соли: классификация, номенклатура, свойства, получение, применение.	2	
81-82	Генетическая связь между основными классами	2	
01 02	неорганических соединений.	-	
83	Практическая работа №6 «Решение экспериментальных задач	1	
55	по теме «Важнейшие классы неорганических соединений».	_	
84	Контрольная работа по теме «Важнейшие классы неорганических соединений».	1	
	псорганических соединении».		

Тематическое планирование уроков химии 9 класс (2 часа в неделю, всего 70 часов , из них 3часа – резервное время).

№	Тема урока	Кол-во часов	
Раздел 1.	Многообразие химических реакций. (15часов)		
1-2	Окислительно-восстановительные реакции.	2	
3	Тепловой эффект химических реакций. Экзо- и эндотермические реакции.	1	
4	Скорость химических реакций. Первоначальные представления о катализе.	1	
5	Практическая работа №1 «Изучение влияний условий проведения химической реакции на ее скорость».	1	
6	Обратимые и необратимые реакции. Понятие о химическом равновесии.	1	
7	Сущность процесса электролитической диссоциации.	1	
8	Диссоциация кислот, оснований и солей.	1	
9	Сильные и слабые электролиты. Степень диссоциации.	1	
10	Реакции ионного обмена и условия их протекания.	1	
11-12	Химические свойства основных классов неорганических	1	
	соединений в свете представлений об электролитической		
	диссоциации и окислительно-восстановительных реакциях.		
13	Обобщение по темам «Классификация химических реакций» и	1	
	«Электролитическая диссоциация».		
14	Практическая работа №2. Решение экспериментальных задач по	1	
	теме «Свойства кислот, оснований и солей как электролитов»		
15	Контрольная работа по темам «Классификация химических	1	
	реакций» и «Электролитическая диссоциация».		
Раздел 2.	Многообразие веществ. (43 часа)		
16	Положение галогенов в периодической таблице и строение их	1	
	атомов. Свойства, получение и применение галогенов.		
17	Хлор. Свойства и применение хлора.	1	
18	Хлороводород: получение и свойства.	1	
19	Соляная кислота и ее соли.	1	
20	Практическая работа №3. Изучение свойств соляной кислоты.	1	
21	Положение кислорода и серы в периодической системе химических	1	
	элементов, строение их атомов. Аллотропия серы.		
22	Свойства и применение серы.	1	
23	Сероводород. Сульфиды.	1	
24	Оксид серы (IV). Сернистая кислота и ее соли.	1	
25	Оксид серы (VI). Серная кислота и ее соли.	1	
26	Окислительные свойства концентрированной серной кислоты.	1	
27	Практическая работа №4. Решение экспериментальных задач по теме «Кислород и сера».	1	
28	Решение расчетных задач.	1	
29	Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот: свойства и применение.	1	
30	Аммиак. Физические и химические свойства. Получение и применение.	1	
31	Практическая работа №5. Получение аммиака и изучение его свойств.	1	
32	Соли аммония.	1	
33	Азотная кислота. Строение молекулы. Свойства разбавленной	1	

	азотной кислоты.		
34	Свойства концентрированной азотной кислоты.	1	
35	Соли азотной кислоты. Азотные удобрения.	1	
36	Фосфор. Аллотропия фосфора. Свойства фосфора.	1	
37	Оксид фосфора (V). Фосфорная кислота и ее соли. Фосфорные	1	
31	удобрения.	1	
38	Положение углерода и кремния в периодической системе	1	
50	химических элементов, строение их атомов. Аллотропные	-	
	модификации углерода.		
39	Химические свойства углерода. Адсорбция.	1	
40	Угарный газ: свойства, физиологическое действие.	1	
41	Углекислый газ. Угольная кислота и ее соли. Круговорот углерода в	1	
	природе.	-	
42	Практическая работа №6. Получение углекислого газа и изучение	1	
	его свойств. Распознавание карбонатов.		
43	Кремний и его соединения. Стекло. Цемент.	1	
44	Обобщение по теме «Неметаллы».	1	
45	Контрольная работа по теме «Неметаллы»	1	
46	Положение металлов в периодической системе химических	1	
	элементов Д.И.Менделеева. Металлическая связь. Физические		
	свойства металлов. Сплавы металлов.		
47	Нахождение металлов в природе и общие способы их получения.	1	
48	Химические свойства металлов. Ряд активности металлов.	1	
49	Щелочные металлы: нахождение в природе, физические и	1	
	химические свойства.		
50	Оксиды и гидроксиды щелочных металлов. Применение щелочных	1	
	металлов.		
51	Щелочноземельные металлы. Нахождение в природе. Кальций и его	1	
	соединения. Жесткость воды и способы ее устранения.		
52	Алюминий. Нахождение в природе. Свойства алюминия.	1	
53	Амфотерность оксида и гидроксида алюминия.	1	
54	Железо. Нахождение в природе. Свойства железа.	1	
55	Соединения железа.	1	
56	Практическая работа №7. Решение экспериментальных задач по	1	
	теме «Металлы и их соединения».		
57	Подготовка к контрольной работе.	1	
58	Контрольная работа по теме «Металлы».	1	
	. Краткий обзор важнейших органических веществ. (9 часов)		
59	Органическая химия.	1	
60	Предельные углеводороды.	1	
61	Непредельные углеводороды	1	
62	Спирты.	1	
63	Карбоновые кислоты. Сложные эфиры. Жиры.	1	
64	Углеводы.	1	
65	Аминокислоты. Белки.	1	
66	Полимеры.	1	
67	Обобщающий урок по теме «Важнейшие органические соединения.	1	
Резервно	ре время – 3 часа.		

Система контроля и оценки учебных достижений обучающихся.

Виды контроля

- 1. вводный;
- 2. промежуточный;
- 3. текущий;
- 4. тематический;
- 5. итоговый.

Методы контроля

- 1. письменный;
- 2. устный.

Формы контроля

- 1. тесты;
- 2. зачеты;
- 3. устный опрос;
- 4. самостоятельные работы;
- 5. фронтальный опрос.
- 6. индивидуальная работа у доски;
- 7. индивидуальная работа по карточкам;
- 8. проверочные работы;
- 9. контрольные работы